

Fig. 1. Diagram of the molecule showing bond lengths (\AA) angles $\left({ }^{\circ}\right)$ and atom numbering.

The Ag^{+}ion is coordinated to three ligand molecules, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2}$. It is at the center of a triangle formed by the $\mathrm{N}(2)$ atoms of the pyrazolic rings (Fig. 1). The nitrate group is at about $c / 2$ from the heavy atom (Fig. 2). All relevant distances and angles are shown in Figs. 1 and 2. The structure can be described as non-bonded chains of bipyramids running allong the c direction sharing their axial vertices.

As can be seen from the final values of the thermal parameters of the N and O atoms of NO_{3}^{-}, this group exhibits much thermal motion $\left[\mathrm{N}(3): U_{11}=U_{22}=2 U_{12}\right.$ $=0.079, U_{33}=0.358, U_{23}=U_{13}=0 \AA^{2} ; \mathrm{O}(1): U_{11}=$ $0.151, U_{22}=0.157, U_{33}=0.152, U_{12}=0.087, U_{13}=$ $\left.0.027, U_{23}=0.045 \AA^{2}\right]$. The vibration of the N atom is extremely anisotropic with the greatest amplitude

Fig. 2. The relationship of the nitrate group, showing bond distances (\AA) and angles $\left({ }^{\circ}\right)$.
along the c direction. This may be due to the large free space left by the organic ligands. The NO_{3}^{-}group is not planar and the distance $\mathrm{N}(3)-\mathrm{O}(1)$ [1-33(3) \AA] is longer than the usual value (Addison, Logan \& Wallwork, 1971), but similar to one of the $\mathrm{N}-\mathrm{O}$ distances in $\mathrm{AgNO}_{3}: 1 \cdot 19(6), 1 \cdot 32(6), 1 \cdot 23$ (6) \AA (Lindley \& Woodward, 1966). The deformations and interactions of the nitrate group cannot be checked by infrared spectroscopy because the NO_{3}^{-}characteristic bands are masked by typical bands of the organic ligands. All other bond angles and distances are normal.

This work was sponsored by grants from BIDFINEP, CNPq and FAPESP.

References

Addison, C. C., Logan, N. \& Wallwork, S. C. (1971). Q. Rev. Chem. Soc. 25, 289-322.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Lindley, B. F. \& Woodward, P. (1966). J. Chem. Soc. A, pp. 123-126.
Molina, M., Angst, M., Garcia, E. K. \& Melios, C. V. (1972). J. Inorg. Nucl. Chem. 34, 3215-3220.

Isopropylammonium Trichloromanganate(II) Dihydrate

By Roger D. Willett
Department of Chemistry and The Chemical Physics Program, Washington State University, Pullman, Washington 99164, USA

(Received 17 July 1978; accepted 11 October 1978)

Abstract

CH}_{3}\right)_{2} \mathrm{CHNH}_{3} \mathrm{MnCl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{3} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{Mn}-\) N. $2 \mathrm{H}_{2} \mathrm{O}$, monoclinic, $P 2_{1} / c, a=14.435$ (14), $b=$ 5.889 (2), $c=13.281$ (9) $\AA, \beta=109.60$ (2) ${ }^{\circ}, Z=4$, $D_{c}=1.607 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71069 \AA$. The structure contains discrete $\mathrm{Mn}_{2} \mathrm{Cl}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ dimers which are hydrogen-bonded together to form a two-dimen-

0567-7408/79/010178-04\$01.00
sional layer in the $b c$ plane. Adjacent layers are separated by the organic cations. Each dimer contains a pair of nearly symmetric $\mathrm{Mn}-\mathrm{Cl}-\mathrm{Mn}$ bridges with a bridging angle of 94.58°. The average $\mathrm{Mn}-\mathrm{Cl}$ distance is $2.558 \AA$ and the average $\mathrm{Mn}-\mathrm{O}$ distance is $2 \cdot 212$ Å.

Introduction. Crystals of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{3} \mathrm{MnCl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ can easily be grown from aqueous or ethanolic solutions of roughly equal molar mixtures of $\left(\mathrm{CH}_{3}\right)_{2}-$ $\mathrm{CHNH}_{3} \mathrm{Cl}$ and $\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$. They grow as flat, rhombic platelets with the characteristic pink coloration of octahedral $\mathrm{Mn}^{\mathrm{II}}$.

A small crystal $0.023 \times 0.20 \times 0.20 \mathrm{~mm}$ was mounted for data collection. Systematic extinctions of $l=2 n+1$ for $h 0 l$ reflections and $k=2 n+1$ for $0 k 0$ reflections determined the space group uniquely as $P 2_{1} / c$ for the monoclinic crystal. Lattice constants were determined by accurately centering 12 reflections with Mo $K \alpha$ radiation. The (100) faces are the large developed faces of the platelets. Intensity data were collected on an automated Picker diffractometer with Zr -filtered Mo $K \alpha$ radiation. A $\theta-2 \theta$ scan of 2.0° was utilized with 20 steps of 3 s duration. Background was counted for 30 s before and after each scan. A total of 1813 independent reflections were collected in the range $2 \theta \leq 50^{\circ}$, of which 1550 had intensity greater than $3 \sigma(I)$ where $\sigma^{2}(I)=\mathrm{TC}+\mathrm{BC}+(0.03)^{2} I^{2}$ and $\mathrm{TC}=$ total counts, $\mathrm{BC}=$ background counts, and $I=$ TC - BC. Absorption corrections were made ($\mu=$ $2.20 \mathrm{~mm}^{-1}$).

The structure was solved using conventional heavyatom Patterson function analysis and electron density/ difference electron density maps. The structure refinement proceeded in a straightforward manner and it was possible to locate the H atoms from a difference synthesis. Full-matrix refinement with ansiotropic thermal parameters for all non-hydrogen atoms (but

Table 1. Final positional parameters ($\times 10^{5}$ for Mn and $\mathrm{Cl} ; \times 10^{4}$ for O, N and $\mathrm{C} ; \times 10^{3}$ for H)

	x	y	z
	y	z	
Mn	$12228(4)$	$3786(10)$	$-2472(4)$
$\mathrm{Cl}(1)$	$4358(7)$	$18816(18)$	$10942(7)$
$\mathrm{Cl}(2)$	$27328(8)$	$28047(18)$	$6261(8)$
$\mathrm{Cl}(3)$	$18362(8)$	$-13115(19)$	$-16177(8)$
$\mathrm{O}(1)$	$1772(2)$	$-2459(5)$	$889(2)$
$\mathrm{O}(2)$	$537(2)$	$3193(5)$	$-1347(2)$
N	$2715(2)$	$3754(6)$	$8023(2)$
$\mathrm{C}(1)$	$3802(3)$	$4295(8)$	$8646(3)$
$\mathrm{C}(2)$	$4164(4)$	$5971(9)$	$8003(4)$
$\mathrm{C}(3)$	$4380(4)$	$2081(10)$	$8885(4)$
$\mathrm{HO}(11)$	153	636	132
$\mathrm{HO}(2)$	194	677	59
$\mathrm{HO}(21)$	41	359	808
$\mathrm{HO}(22)$	37	416	900
$\mathrm{HC}(11)$	380	505	937
$\mathrm{HC}(21)$	364	732	772
$\mathrm{HC}(22)$	422	476	739
$\mathrm{HC}(23)$	483	683	820
$\mathrm{HC}(31)$	431	326	319
$\mathrm{HC}(32)$	395	366	419
$\mathrm{HC}(33)$	525	313	439
$\mathrm{HN}(1)$	257	260	853
$\mathrm{HN}(2)$	255	257	720
$\mathrm{HN}(3)$	260	530	809

with all H atom parameters fixed) converged to a final conventional R value of 0.043 and a weighted R value of $0.045\left[w(h k l)=1 / \sigma^{2}(F)\right]$. The standard deviation of a reflection of unit weight was $2 \cdot 2 .{ }^{*}$ Scattering factors were taken from International Tables for Crystallography (1968). Final structural parameters are given in Table 1 and pertinent interatomic distances and angles in Table 2. Computer programs were part of a local library (Anderson, 1971; Caputo, 1976).

Discussion. The crystal structure of $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{3}\right]$ $\mathrm{MnCl}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ consists of centrosymmetric $\mathrm{Mn}_{2} \mathrm{Cl}_{6}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ anionic dimers (Fig. 1) and isopropylammonium cations. Interdimer hydrogen bonds tie the

[^0]Table 2. Selected interatomic distances (\AA) and angles $\left(^{\circ}\right.$) in $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{3}\right] \mathrm{MnCl}_{3} .2 \mathrm{H}_{2} \mathrm{O}$

Dimer	
$\mathrm{Mn}-\mathrm{Cl}(1)$	$2.570(1)$
$\mathrm{Mn}-\mathrm{Cl}(1)^{a}$	$2.639(1)$
$\mathrm{Mn}-\mathrm{Cl}(2)$	$2.538(1)$
$\mathrm{Mn}-\mathrm{Cl}(3)$	$2.484(1)$
$\mathrm{Mn}-\mathrm{O}(1)$	$2.213(3)$
$\mathrm{Mn}-\mathrm{O}(2)$	$2.211(3)$
$\mathrm{Mn}-\mathrm{Mn}$	$3.828(1)$

$\mathrm{Cl}(1)-\mathrm{Mn}-\mathrm{Cl}(1)^{a}$	$85.43(4)$
$\mathrm{Cl}(1)-\mathrm{Mn}-\mathrm{Cl}(2)$	$90.05(4)$
$\mathrm{Cl}(1)-\mathrm{Mn}-\mathrm{Cl}(3)$	$174.33(4)$
$\mathrm{Cl}(1)^{a}-\mathrm{Mn}-\mathrm{Cl}(2)$	$174.97(4)$
Cl()$^{a}-\mathrm{Mn}-\mathrm{Cl}(3)$	$88.91(4)$
$\mathrm{Cl}(2)-\mathrm{Mn}-\mathrm{Cl}(3)$	$95.61(4)$
$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{Cl}(1)$	$85.87(9)$
$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{Cl}(1)^{a}$	$88.63(9)$
$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{Cl}(2)$	$93.28(7)$
$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{Cl}(3)$	$93.61(9)$
$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{O}(2)$	$174.33(12)$
$\mathrm{O}(2)-\mathrm{Mn}-\mathrm{Cl}(1)$	$89.75(9)$
$\mathrm{O}(2)-\mathrm{Mn}-\mathrm{Cl}(1)^{a}$	$87.44(8)$
$\mathrm{O}(2)-\mathrm{Mn}-\mathrm{Cl}(2)$	$90.32(8)$
$\mathrm{O}(2)-\mathrm{Mn}-\mathrm{Cl}(3)$	$90.40(8)$
$\mathrm{Mn}-\mathrm{Cl}(1)-\mathrm{Mn}$	$94.57(6)$

Cation

$\mathrm{N}-\mathrm{C}(1)$	$1.542(5)$	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	$108.3(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.508(8)$	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(3)$	$108.8(4)$
$\mathrm{C}(1)-\mathrm{C}(3)$	$1.523(8)$	$\mathrm{Cl}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	$114.1(4)$

Hydrogen-bonding contacts

$\mathrm{N}-\mathrm{Cl}(2){ }^{\text {b }}$	3.321 (3)	$\mathrm{C}(1)-\mathrm{N}-\mathrm{Cl}(2)^{\text {b }}$	103.7 (2)
$\mathrm{N}-\mathrm{Cl}(3){ }^{\text {c }}$	$3 \cdot 270$ (4)	$\mathrm{C}(1)-\mathrm{N}-\mathrm{Cl}(3)^{\text {c }}$	96.5 (2)
$\mathrm{N}-\mathrm{Cl}(3)^{\text {d }}$	$3 \cdot 338$ (4)	$\mathrm{C}(1)-\mathrm{N}-\mathrm{Cl}(3)^{\text {d }}$	118.4 (2)
		$\mathrm{Cl}(2)^{h}-\mathrm{N}-\mathrm{Cl}(3)^{\text {c }}$	120.9 (1)
		$\mathrm{Cl}(2)^{\text {b }}-\mathrm{N}-\mathrm{Cl}(3)^{\text {d }}$	90.9 (1)
		$\mathrm{Cl}(3)^{c}-\mathrm{N}-\mathrm{Cl}(3)^{\text {d }}$	126.1 (1)
$\mathrm{O}(1)-\mathrm{Cl}(2)^{e}$	$3 \cdot 186$ (3)	$\mathrm{Mn}-\mathrm{O}(1)-\mathrm{Cl}(2)^{e}$	131.0 (1)
$\mathrm{O}(1)-\mathrm{Cl}(3)^{r}$	$3 \cdot 360$ (3)	$\mathrm{Mn}-\mathrm{O}(1)-\mathrm{Cl}(3)^{\prime}$	$136 \cdot 1$ (1)
		$\mathrm{Cl}(2)^{e}-\mathrm{O}(1)-\mathrm{Cl}(3)^{\text {r }}$	92.9 (1)
$\mathrm{O}(2)-\mathrm{Cl}(1)^{8}$	$3 \cdot 289$ (3)	$\mathrm{Mn}-\mathrm{O}(2)-\mathrm{Cl}(1)^{\text {g }}$	134.9 (1)
$\mathrm{O}(2)-\mathrm{Cl}(1)^{h}$	$3 \cdot 353$ (4)	$\mathrm{Mn}-\mathrm{O}(1)-\mathrm{Cl}(1)^{a}$	121.1 (1)
		$\mathrm{Cl}(1)^{8}-\mathrm{O}(2)-\mathrm{Cl}(1)^{a}$	103.9 (1)

[^1]dimers together into a two-dimensional net in the $b c$ plane as illustrated in Fig. 2. The cations form hydrogen bonds into this net (Fig. 3) in such a manner as to form an organic sheath above and below the layer. The structure is similar to that of β - RbMn $\mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Jensen, 1967) and $\mathrm{KMnCl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Jensen, 1968; Birkelund \& Jensen, 1972). These latter salts are triclinic, so all dimers assume a single orientation, in contrast to the results for the monoclinic salt reported here.

Each dimer contains two nearly symmetric Mn-$\mathrm{Cl}(1)-\mathrm{Mn}$ bridges, with $\mathrm{Mn}-\mathrm{Cl}$ distances of 2.570 and $2.639 \AA$ and a bridging angle of 94.58°. The terminal $\mathrm{Mn}-\mathrm{Cl}$ bonds, essentially coplanar with the $\mathrm{Mn}_{2} \mathrm{Cl}_{2}$ moiety, are considerably shorter at 2.484 and $2.539 \AA$. The O atoms are trans across the coordination sphere, at 2.213 and $2.211 \AA$. The $\mathrm{O}(1)-\mathrm{Mn}-\mathrm{O}(2)$ angle deviates slightly from linearity (174.3°), the $\mathrm{Mn}-\mathrm{O}$ bonds being tilted in towards the middle of the dimer.

Fig. 1. Geometry of the $\mathrm{Mn}_{2} \mathrm{Cl}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ dimer.

Fig. 2. Illustration of the hydrogen-bonding interactions between dimers. The b axis is vertical and the c axis horizontal. O atoms are shown without ellipses.

Fig. 3. Illustration of the structure as viewed from the b direction. The c axis is horizontal. The O atoms are shown without ellipses.

The distortion from idealized $D_{2 h}$ symmetry is considerably more severe than that observed in $\mathrm{KMnCl}_{3} .2 \mathrm{H}_{2} \mathrm{O}$, where the bridging $\mathrm{Mn}-\mathrm{Cl}$ bond lengths only differ by $0.016 \AA$ and the terminal bond lengths by $0.008 \AA$. The bridging $\mathrm{Mn}-\mathrm{Cl}-\mathrm{Mn}$ angle is 96.24° in the K salt.

Each water molecule participates in two distinct hydrogen bonds, one with the dimer in the adjacent unit cell in the b direction, and one with a dimer diagonally adjacent in the $b c$ plane. This is illustrated in Fig. 2, which shows a view onto the $b c$ plane. The hydrogenbond distances between dimers along b are shorter (3.187 and $3.209 \AA$) than those along the $b c$ diagonal (3.353 and $3.360 \AA$). The latter are shown more clearly in Fig. 3, which gives an illustration of the structure as viewed from the b direction. In this, it can be seen that these $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds help to hold the network of dimers together. Each N atom is hydrogen bonded to two $\mathrm{Cl}(3)$ atoms in adjacent dimers along the b axis and to a $\mathrm{Cl}(2)$ atom in the dimer diagonally adjacent in the $b c$ plane. Thus, the layer of $\mathrm{Mn}_{2} \mathrm{Cl}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ dimers becomes sandwiched between two layers of isopropylammonium ions. These 'sandwiches' stack along the a axis, with interlocking of the methyl groups of one sandwich into the gaps between isopropylammonium ions of the adjacent sandwich. It is this packing which determines the β angle of the monoclinic unit cell.

These dimeric structures can be contrasted to two other types of $A \mathrm{MnCl}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ structures known. $\mathrm{CsMnCl}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ contains $\mathrm{MnCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ octahedra which share corners to form infinite chains (Jensen, Anderson \& Rasmussen, 1962). The bridging $\mathrm{Mn}-\mathrm{Cl}-\mathrm{Mn}$ angle is 124.8°. Similar structures are assumed by $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right) \mathrm{MnCl}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}-$ $\mathrm{MnCl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Caputo, 1976). In $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NHMn}^{2}$ $\mathrm{Cl}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ (Caputo, Willett \& Muir, 1976) the $\mathrm{MnCl}_{4}{ }^{-}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ octahedra share edges to form linear chains of stoichiometry $\left[\mathrm{MnCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$. The third Cl ion occupies a lattice site independent of the chains. The $\mathrm{Mn}-\mathrm{Cl}-\mathrm{Mn}$ bridging angles are comparable (94.83 and 92.63°) to those in the isopropylammonium dimer. Thus, a variety of structures appear possible for $A \mathrm{Mn}$ $\mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ salts, dictated by packing and hydrogenbonding interactions.

Since the initial interest in this salt was in its potential magnetic properties, it is worthwhile to point out several features. The magnetic coupling between the Mn^{2+} ions in the dimer is determined principally by the bridging $\mathrm{Mn}-\mathrm{Cl}-\mathrm{Mn}$ angle. The observed angle of 94.58° leads to very weak antiferromagnetic coupling, as evidenced by the results on $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}\right) \mathrm{MnCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NH}\right) \mathrm{MnCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (Richards, Quinn \& Morosin, 1973; Caputo, Willett \& Morosin, 1978) as well as $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NHMnCl}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ (Merchant, McClearney, Shankle \& Carlin, 1974). All of these linear chain salts contain similar bi-bridged geometries, and the exchange coupling, $2 J$, is of the order of -0.03 to
$-0.05 \mathrm{~mm}^{-1}$. Exchange coupling via hydrogen bonding can be as large or larger, so the system will be expected to behave as a complex two-dimensional magnet, rather than a simple dimer. The isolation of the layers should make this salt a better two-dimensional magnet than the β - $\mathrm{RbMnCl}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{KMnCl}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ structures. Finally, the Mn^{2+} ions in the dimer are related by centers of inversion. Thus, if the coupling within each dimer is antiferromagnetic as predicted, no spin canting will be present since the spins will be required to align strictly antiparallel by symmetry arguments.

The work was supported by the National Science Foundation.

References

Anderson, D. A. (1971). PhD Thesis, Washington State Univ., USA.

Birkelund, F. \& Jensen, S. J. (1972). Acta Chem. Scand. 26, 1358-1364.
Caputo, R. E. (1976). PhD Thesis, Washington State Univ., USA.
Caputo, R. E., Willett, R. D. \& Morosin, B. (1978). Phys. Rev. B, submitted.
Caputo, R. E., Willett, R. D. \& Muir, J. A. (1976). Acta Cryst. B32, 2639-2648.
International Tables for X-ray Crystallography (1968). Vol. III, 2nd ed., pp. 331-338. Birmingham: Kynoch Press.
Jensen, S. J. (1967). Acta Chem. Scand. 21, 889-898.
Jensen, S. J. (1968). Acta Chem. Scand. 22, 641-646.
Jensen, S. J., Anderson, P. \& Rasmussen, S. E. (1962). Acta Chem. Scand. 16, 1890-1896.
Merchant, S., McClearney, J. N., Shankle, G. E. \& Carlin, R. L. (1974). Physica, 78, 308-313.
Richards, P. M., Quinn, A. K. \& Morosin, B. J. (1973). Chem. Phys. 59, 4474-4477.

Acta Cryst. (1979). B35, 181-183

Struktur des Tricarbonyl(trimethyl-1-methoxy-4-oxo-1,2-diphenyl-1,2-diphospha-cyclopenten-3,3,5-tricarboxylat)-nickel

Von G. Bergerhoff, O. Hammes und D. Hass
Anorganisch-Chemisches Institut der Universität, D-5300 Bonn 1, Gerhard-Domagk-Strasse 1, Bundesrepublik Deutschland

(Eingegangen am 16. Juni 1977; angenommen am 18. Oktober 1978)

Abstract

Ni}\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{P}_{2}\right)(\mathrm{CO})_{3}\right], \quad \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NiO}_{11} \mathrm{P}_{2}\), monoclinic, $B 2 / b, a=36.517$ (5), $b=17.731$ (5), $c=$ 9.380 (3) $\AA, \gamma=91.07(8)^{\circ}, Z=8$. The molecule consists of a five-membered ring containing two directly connected P atoms in different oxidation states. The phenyl groups at the P atoms are in cis positions relative to each other.

Einleitung. Die von Bergerhoff, Hammes, Falbe, Tihanyi, Weber \& Weisheit (1971) erstmals dargestellte Titelverbindung (I) (Fig. 1) lag in nadelförmigen, farblosen, an der Luft und im Röntgenlicht langsam zersetzlichen Kristallen vor. Aus Weissenberg- und Präzessionsaufnahmen folgen die Aussagen über vorhandene Reflexe: $h k l$ nur mit $h+l=2 n, h k 0$ nur mit $k=2 n$. Die Deutung der dreidimensionalen Pattersonsynthese, die mit photometrierten Intensitäten aus integrierten Weissenbergaufnahmen erhalten wurde, gelang jedoch nicht. Dank des Entgegenkommens der Fa. Philips, Eindhoven, stand uns dann für eine Messung kurzfristig das computergesteuerte Zählrohrdiffraktometer PW 1100 zur Verfügung. An einer

Kristallnadel ($0,2 \mathrm{~mm}$ Durchmesser) konnten nun in kürzerer Zeit mit Mo-K α-Strahlung (Graphit-Monochromator) bis $2 \theta=36^{\circ} 2089$ Reflexe gemessen werden. Aus Patterson- und Fourier-Synthesen konnten jetzt auf dem üblichen Wege nacheinander alle Parameter bis auf die der H-Atome entnommen werden. Alle Rechnungen wurden mit dem XRAY

Fig. 1. Bezifferung im Molekül des (I) in Anlehnung an Saenger (1973).

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33952 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

[^1]: Symmetry code: (a) $-x,-y,-z$; (b) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (c) $x, 1+y, 1+z$; (d) $x, y, 1+z$; (e) $x,-1+y, z$; (f) $x,-\frac{1}{2}-y, \frac{1}{2}+z ;(g)-x, 1-y$, $-z$; (h) $x, \frac{1}{2}-y, \frac{1}{2}+z$.

